Evaluation of Transit Eco-driving in Rural, Suburban, and Urban Environments

Xiaodan Xu
Hanyan “Ann” Li
Haobing Liu
Michael O Rodgers, PhD
Randall Guensler, PhD

Georgia Institute of Technology
School of Civil and Environmental Engineering

Project supported by the National Center for Sustainable Transportation, a National University Transportation Center sponsored by the U.S. Department of Transportation
Problem Statement

- About 43.5% of the total transit expenses are on operations and fuel cost is a significant portion.
- Even 1% or 2% of fuel cost saving result in notable savings for operating costs.
- Transit agencies are seeking solutions to reduce fuel use, which also reduces emissions.
- In previous studies, eco-driving strategies can yield 2% to 27% fuel savings for transit fleets.
Definition of eco-driving

- **Eco-driver training**: a feasible strategy to reduce fuel consumption and emissions of all kinds of vehicle types

- **Eco-driving techniques** (*Intelligent Energy Europe, 2011*)
 - Anticipate traffic
 - Maintain a steady speed
 - Limit engine loads
 - Limit high speeds
 - Avoid hard accelerations
 - Limit idling
 - Shift to the highest possible gear with low rpm
 - Check tire pressure regularly
Previous Research Findings

<table>
<thead>
<tr>
<th>Source</th>
<th>Location</th>
<th>Vehicle Type</th>
<th>Methodology</th>
<th>Estimated benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zarkadoula, et al. (2007)</td>
<td>Athens, Greece</td>
<td>Bus</td>
<td>Field measurement</td>
<td>4.35% reduction in fuel use per km</td>
</tr>
<tr>
<td>Wåhlberg (2007)</td>
<td>Uppsala, Sweden</td>
<td>Bus</td>
<td>Field measurement</td>
<td>2%- 4% fuel savings</td>
</tr>
<tr>
<td>Strömberg and Karlsson (2013)</td>
<td>Sweden</td>
<td>Bus</td>
<td>Field measurement</td>
<td>6.8% fuel savings</td>
</tr>
<tr>
<td>Carrese (2013)</td>
<td>City of Rome, Italy</td>
<td>Bus</td>
<td>Field measurement</td>
<td>Up to 27% of fuel saving</td>
</tr>
<tr>
<td>Rolim, et al. (2014)</td>
<td>Portugal</td>
<td>Bus</td>
<td>Field measurement</td>
<td>Reduced travel time under undesired driving condition</td>
</tr>
<tr>
<td>Zheng and Zhang (2015)</td>
<td>Beijing, China</td>
<td>Bus</td>
<td>Simulation</td>
<td>Reduced Vehicle STP</td>
</tr>
<tr>
<td>Xu, et al. (2017)</td>
<td>Atlanta, GA, USA</td>
<td>Bus</td>
<td>Field data and simulation</td>
<td>5% fuel saving for local transit, 7% for express bus</td>
</tr>
</tbody>
</table>
Research Gap

Study Area
• Most studies performed in urban areas
• Need to analyze rural/suburban areas

Road Grade
• Flat terrain or constant grade
• Need to consider instantaneous road grade

Local Context
• Most studies performed in European countries
• Need to consider local fuel, meteorology, and operating conditions in U.S.
Research Goal

- Assess the potential benefits of eco-driving for transit services in different areas
 - Urban, suburban, rural
- Examine the relationship between fuel saving and local transit service characteristics:
 - Travel speed
 - Road grade
 - Fuel type
 - Annual mileage
Methodology Overview

Initial GPS data collection

Data Post-process
- Remove duplicate data record
- Use Kalman filter to minimize GPS errors
- Cubic Spline to fill missing values
- Remove off route operation
- Match road grade
- Cleaned dataset

Compare operation features
- Speed-acc Plots
- Opmode bin Distribution
- Road grade

Raw cycle energy use
- Raw speed, acceleration and road grade profile
- MOVES-Matrix

ECODRIVING energy use
- ECODRIVING speed, acceleration and road grade profile
- MOVES-Matrix

Energy use before eco-driving

Energy use after eco-driving

Compare Energy use before and after eco-driving
Methodology Overview

Initial GPS data collection

Data Post-process
- Remove duplicate data record
- Use Kalman filter to minimize GPS errors
- Cubic Spline to fill missing values
- Remove off route operation
- Match road grade
- Cleaned dataset

Compare operation features
- Speed-acc Plots
- Opmode bin Distribution
- Road grade

Raw cycle energy use
- Raw speed, acceleration and road grade profile
- MOVES-Matrix

Ecodriving energy use
- Ecodriving speed, acceleration and road grade profile
- MOVES-Matrix

Energy use before ecodriving

Adjust speed-acceleration profile and match grade

Energy use after ecodriving

Compare Energy use before and after eco-driving
Methodology Overview

Initial GPS data collection

Data Post-process
- Remove duplicate data record
- Use Kalman filter to minimize GPS errors
- Cubic Spline to fill missing values
- Remove off route operation
- Match road grade
- Cleaned dataset

Compare operation features
- Speed-acc Plots
- Opmode bin Distribution
- Road grade

Raw cycle energy use
- Raw speed, acceleration and road grade profile
- MOVES-Matrix

Ecodriving energy use
- Ecodriving speed, acceleration and road grade profile
- MOVES-Matrix

Adjust speed-acceleration profile and match grade

Energy use before eco-driving
Compare Energy use before and after eco-driving

Energy use after eco-driving
Vehicle Operations Data Collection

MARTA
(urban + suburban)

Apple Country Transit
(rural)
Vehicle Fleet

MARTA

CNG

Diesel

Apple Country Transit

CNG
Post-processing of On-road Data

1. **Remove duplicated data records:**
 Remove cycle data written twice on the server

2. **Kalman filter data smoothing:**
 Modify the erroneous GPS points

3. **Cubic spline to fill missing value:**
 Interpolate missing values (less than 5 seconds)

4. **Remove off-route operations:**
 Remove non-revenue operations and terminal idling

5. **Attach road grade:**
 Second-by-second road grade profile by route*

Liu, Haobing, Hanyan Li, Michael Rodgers, Randall Guensler. (2018). Development of Road Grade Data Based On USGS Digital Elevation Model. 97th Annual Meeting of the Transportation Research Board. Washington, DC.
Transit Service Statistics

<table>
<thead>
<tr>
<th>Service</th>
<th>Downtown</th>
<th>Suburban</th>
<th>Rural</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency</td>
<td>MARTA</td>
<td>MARTA</td>
<td>Apple Country Transit</td>
</tr>
<tr>
<td>Number of routes</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Total distance (mile)</td>
<td>407.94</td>
<td>129.44</td>
<td>178.78</td>
</tr>
<tr>
<td>Total duration (h)</td>
<td>4774.95</td>
<td>2190.78</td>
<td>3574.96</td>
</tr>
<tr>
<td>Average speed (mph)</td>
<td>11.71</td>
<td>16.93</td>
<td>20.00</td>
</tr>
<tr>
<td>2.5th percentile grade (%)</td>
<td>-5.04</td>
<td>-4.29</td>
<td>-6.03</td>
</tr>
<tr>
<td>50th percentile grade (%)</td>
<td>0.36</td>
<td>0.00</td>
<td>-0.17</td>
</tr>
<tr>
<td>97.5th percentile grade (%)</td>
<td>4.99</td>
<td>7.71</td>
<td>6.02</td>
</tr>
</tbody>
</table>
Operation Patterns

- Apply EPA’s MOVES scaled tractive power (STP) to observed onroad activity
- STP is a function of speed, acceleration, and road grade

\[STP = \left(\frac{A}{M}\right)V + \left(\frac{B}{M}\right)V^2 + \left(\frac{C}{M}\right)V^3 + \left(\frac{m}{M}\right)(a + g \times \sin\theta)V \]

- Using MOVES pre-2014 transit bus parameters
Eco-driving strategy

- **Determine STP upper limit (STP_L)**
 - If current STP< STP_L, maintain operation quo
 - If current STP>= STP_L, adjust acceleration using until reach the top speed limit:

 \[
 acc_L = \frac{STP_L \times M}{mV} - g \times \sin \theta - \left(\frac{A}{m} \right) - \left(\frac{B}{m} \right) V - \left(\frac{C}{m} \right) V^2
 \]

- **Add additional cruising to match speed**

![Graph showing speed over time with labels for maintain operation quo, smooth acceleration curve, add cruising to match distance, and maintain operation quo.]
Eco-driving strategy – max acceleration

Maximum acceleration under different speed and grade

![Graph showing maximum acceleration under different speed and grade]
Eco-driving Strategy – Cycle Comparison

Eco-driving without grade ($\text{STP}_L = 6$)

Eco-driving with grade ($\text{STP}_L = 6$)
Performance Metrics

- **Speed-acceleration distribution**: idling truncated
- **Operating Mode (OpMode) bin distribution**: fraction of different operation condition, including idling, braking, different speed levels and power levels
- **Energy consumption**: energy consumption in MJ per mile for raw driving cycle and eco-driving cycle, CNG fuel and diesel fuel, with and without grade
- **On-time performance**: travel time after eco-driving compared to bus schedule
- **Cost**: total fuel cost saving and fuel cost saving per mile, based on 2017 summer local fuel cost.
Rural Speed-Acceleration Distribution

Raw Cycle

Eco Cycle (No Grade)
Avg speed: 19.38 mph

Eco Cycle (with Grade)
Avg speed: 19.08 mph
Suburban Speed-Acceleration Distribution

Raw Cycle

Eco Cycle (No Grade)

Eco Cycle (with Grade)
Urban Speed-Acceleration Distribution

Raw Cycle

Eco Cycle (No Grade)

Eco Cycle (with Grade)
Raw Cycle (No Grade) OpMode Bin Distribution

- Raw Cycle (No Grade)

![Graph showing distribution of operating modes based on speed and STP categories for different areas: Rural, Suburban, Urban.](image-url)
Eco Cycle (No Grade)
OpMode Bin Distribution

- Eco Cycle (No Grade)
Raw Cycle (with Grade) OpMode Bin Distribution

- Raw Cycle (with Grade)
Eco Cycle (with Grade)

OpMode Bin Distribution

- Eco Cycle (with Grade)
Energy Consumption Model Input Data

<table>
<thead>
<tr>
<th>ITEM</th>
<th>MARTA</th>
<th>APPLE COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>County</td>
<td>Fulton, GA</td>
<td>Henderson, NC</td>
</tr>
<tr>
<td>Calendar year</td>
<td>2017</td>
<td>2017</td>
</tr>
<tr>
<td>Season</td>
<td>Summer</td>
<td>Summer</td>
</tr>
<tr>
<td>Temperature</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>Humidity</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>Fuel</td>
<td>Diesel CNG</td>
<td>Diesel CNG</td>
</tr>
<tr>
<td>IM program</td>
<td>MOVES default</td>
<td>MOVES default (no IM)</td>
</tr>
<tr>
<td>Vehicle type</td>
<td>Transit bus (42)</td>
<td>Transit bus (42), scaled by real world fuel economy</td>
</tr>
<tr>
<td>Model year</td>
<td>2011</td>
<td>2011</td>
</tr>
<tr>
<td>Cycle</td>
<td>• MARTA CYCLE</td>
<td>• RURAL CYCLE</td>
</tr>
<tr>
<td></td>
<td>• ECO CYCLE</td>
<td>• ECO CYCLE</td>
</tr>
<tr>
<td>Grade</td>
<td>• Real-world grade</td>
<td>• Real-world grade</td>
</tr>
<tr>
<td></td>
<td>• No grade</td>
<td>• No grade</td>
</tr>
<tr>
<td>Road type</td>
<td>Local</td>
<td>Local</td>
</tr>
</tbody>
</table>
Energy Consumption (CNG)

![Bar chart showing energy consumption for CNG in rural, suburban, and urban areas with different grades and no grades.](chart.png)
Energy Consumption (Diesel)

The diagram illustrates the raw cycle energy consumption (MJ/mile) and ecodriving energy consumption (MJ/mile) for different regions and conditions:

- **Rural**:
 - Grade Diesel: 16.77 MJ/mile
 - Nograde Diesel: 15.98 MJ/mile

- **Suburban**:
 - Grade Diesel: 32.55 MJ/mile
 - Nograde Diesel: 30.87 MJ/mile

- **Urban**:
 - Grade Diesel: 39.6 MJ/mile
 - Nograde Diesel: 37.61 MJ/mile

The diagram also highlights the percentage difference between Grade and Nograde Diesel in each category:

- Rural Grade Diesel: -4%
- Rural Nograde Diesel: -3%
- Suburban Grade Diesel: -5%
- Suburban Nograde Diesel: -4%
- Urban Grade Diesel: -5%
- Urban Nograde Diesel: -4%
On-schedule Check

![Graph showing travel times for different routes and conditions.](image)

- **Original Travel Time**
- **Ecodriving travel time no grade**
- **Ecodriving travel time with grade**
- **Travel time on Schedule**
- **Travel + Dwell Time on Schedule**

Route
- Rural
- Suburban Route
- Urban

Travel Time (Min)

Bottom Line
Fuel Savings for Diesel

<table>
<thead>
<tr>
<th></th>
<th>Rural</th>
<th>Suburban</th>
<th>Urban</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual mileage</td>
<td>163,373</td>
<td>981,856</td>
<td>730,005</td>
</tr>
<tr>
<td>Before Fuel rate (Mile/GGE)</td>
<td>7.3</td>
<td>3.8</td>
<td>3.1</td>
</tr>
<tr>
<td>Before fuel usage (DGE)</td>
<td>19,686</td>
<td>229,601</td>
<td>207,688</td>
</tr>
<tr>
<td>After Fuel rate (Mile/GGE)</td>
<td>7.7</td>
<td>4.0</td>
<td>3.3</td>
</tr>
<tr>
<td>After fuel usage (DGE)</td>
<td>18,759</td>
<td>217,702</td>
<td>197,237</td>
</tr>
<tr>
<td>Fuel saving (DGE)</td>
<td>927</td>
<td>11,899</td>
<td>10,451</td>
</tr>
<tr>
<td>Unit price ($/DGE)</td>
<td>2.1</td>
<td>2.3</td>
<td>2.3</td>
</tr>
<tr>
<td>Cost saving ($)</td>
<td>$1,946</td>
<td>$27,367</td>
<td>$24,037</td>
</tr>
<tr>
<td>Unit saving ($/Mile)</td>
<td>$0.012</td>
<td>$0.028</td>
<td>$0.033</td>
</tr>
</tbody>
</table>
Fuel Savings for CNG

<table>
<thead>
<tr>
<th>CNG</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Service</td>
<td>Rural</td>
<td>Suburban</td>
<td>Urban</td>
</tr>
<tr>
<td>Annual mileage</td>
<td>163,373</td>
<td>981,856</td>
<td>730,005</td>
</tr>
<tr>
<td>Before Fuel rate (Mile/GGE)</td>
<td>6.3</td>
<td>3.2</td>
<td>2.6</td>
</tr>
<tr>
<td>Before fuel usage (GGE)</td>
<td>25,971</td>
<td>303,298</td>
<td>278,241</td>
</tr>
<tr>
<td>After Fuel rate (Mile/GGE)</td>
<td>6.5</td>
<td>3.3</td>
<td>2.8</td>
</tr>
<tr>
<td>After fuel usage (GGE)</td>
<td>25,140</td>
<td>295,434</td>
<td>264,402</td>
</tr>
<tr>
<td>Fuel saving (GGE)</td>
<td>830</td>
<td>7,864</td>
<td>13,840</td>
</tr>
<tr>
<td>Unit price ($/GGE)</td>
<td>2.1</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>Cost saving ($)</td>
<td>$1,741</td>
<td>$18,874</td>
<td>$33,215</td>
</tr>
<tr>
<td>Unit saving ($/Mile)</td>
<td>$0.011</td>
<td>$0.019</td>
<td>$0.045</td>
</tr>
</tbody>
</table>
Conclusions

- Eco-driving cycles provide different benefits:
 - CNG: 1-5% saving with grade, 2-4% without grade
 - Diesel: 4-5% saving with grade, 3-4% without grade
- The energy saving and cost saving results vary by service type and road grade conditions
- Overall, the eco-driving strategy can help reduce fuel use by 1% to 5% for these transit agencies
 - $0.011 to $0.045 savings in operating cost per mile
- Eco-driving can help agencies reduce fuel use, but the magnitude of the savings depends on local conditions
Future Work

- Assess routes that include highway operations
- Additional service parameters, such as signal timing, passenger load and drivers’ acceptance to eco-driving guidance, should be incorporated
- Field studies are needed with ecodriving intervention to assess the variance in eco-driving benefits across vehicles and drivers
 - Proposals submitted to MARTA and Tech Trolley
THANK YOU!